Multi-Variant Execution to Protect Unpatched
Software

Kevin Bauer, Veer Dedhia, Richard Skowyra, William Streilein, and Hamed Okhravi
MIT Lincoln Laboratory

Abstract—For a variety of economic and practical reasons,
security patches often cannot be deployed immediately after a
patch’s release. To mitigate attacks against unpatched software,
we present the design and evaluation of a Moving Target tech-
nique that uses a form of software diversity called multi-variant
execution. Our technique decomposes the software’s behavior into
its low-level system calls and compares unpatched and patched
execution traces to identify malicious behavior in the unpatched
software. We evaluate our approach on benign and malicious
document samples and our results indicate that multi-variant
execution can detect real exploits with low false positives.

I. INTRODUCTION

In today’s complex cyber threat ecosystem, static and
predictable defenses are insufficient to effectively counter
determined cyber attackers. While traditional defenses such
as signature-based anti-virus tools can be useful at detecting a
significant fraction of malicious campaigns, a recent Microsoft
Security Intelligence Report indicates that even when security
patches and best-practice defense tools are used, adversaries
continue to develop advanced attack techniques and infections
still occur with startling frequency [1].

One important yet often overlooked reason why cyber
attackers continue to have the strategic advantage is due to
the delayed deployment of security-critical software patches.
In response to vulnerability disclosures, software vendors typi-
cally release patches as quickly as possible in order to mitigate
the potential damage caused by live exploits. However, there
is a cost associated with patching a system, in terms of
disruption of services (patching a system often requires a
reboot) or the potential unreliability of the patch (patches often
receive minimal testing). As a result, system administrators
may not apply all security-relevant patches immediately [2].
This is especially relevant with respect to key high-availability
services (e.g. authentication servers, DNS, web proxies), long-
running tasks which cannot be easily check-pointed (e.g. high-
performance computing workloads), and legacy systems which
are not compatible with a new software version and cannot
be upgraded without breaking other applications (e.g. old
operating system distributions or browsers). In August 2014,
for example, 16.37% of PCs were still running Windows XP,
despite support for it ending in April 2014 [3]. Even when
a system can be patched within a relatively short window,
it has been shown that exploits can be generated quickly
and automatically based on a newly released patch [4]. This
unfortunate reality leaves systems vulnerable to attack through
the relatively easy exploitation of known vulnerabilities.

We propose a novel Moving Target (MT) technique to
provide resilience to services relying on unpatched systems
during the window of vulnerability between the time a patch
is made available and when it is deployed. Our approach
uses dynamic software variants to compare the behavior of

This work is sponsored by the Department of Defense under Air Force
Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and rec-
ommendations are those of the author and are not necessarily endorsed by the
United States Government.

978-1-4799-8594-4/15/$31.00 ©2015 IEEE 108

unpatched and patched software on document inputs in order
to detect attacks in the wild before unpatched systems can be
compromised.

Moving Target and Its Applications. In response to the
constantly evolving threat landscape, active defense has been
proposed as a way to restore the advantage to the defender.
Such defenses may involve real-time threat detection in com-
bination with a coordinated response that seeks to change
the cyber environment in a way that thwarts a particular
attack or forces the adversary to change tactics or target other
systems. MT is a form of active defense that specifically
seeks to introduce diversity, dynamism, or randomness into the
computing environment in order to achieve attack resilience
[5].

Numerous MT techniques have been proposed in the lit-
erature with a variety of security goals, including to protect
systems [6]—[8], detect known and unknown threats [9]-[11],
react to successful exploits [12], [13], and/or deceive the
adversary [14]. In this paper, we design and evaluate a new MT
technique based on multi-variant execution to detect exploits
against unpatched systems for which a known security patch is
available but not yet deployed on target systems. Our approach
explores the general concept of MT in terms of software
diversity, which is not as well covered by the literature as
techniques that leverage randomization or uncertainty.
Multi-variant Execution for Detection. Our approach to ma-
licious document detection applies a dynamic software-based
MT technique known as multi-variant execution to compare the
execution of two versions of a document viewer: an unpatched
variant that contains a security-related software bug and a
patched variant that fixes the vulnerability. Discrepancies in
the execution traces of the two variants are used to expose and
detect malicious documents. The use case for our technique
is an enterprise network with numerous machines. When a
patch becomes available for a software application used in
the enterprise, it can be immediately applied to some of
the machines (e.g. end-host workstations, but not others (e.g.
high-availability servers or legacy systems). To protect the
unpatched machines, the untrusted documents sent to them (for
example, via email attachments) are forwarded to a dedicated,
sandboxed scanner machine which runs both the patched and
unpatched variants of the application. If enough discrepancies
are observed between the two variants when opening the
document, the document is marked as malicious and is quaran-
tined. Otherwise, it is forwarded to the unpatched destination
machine. Note that the scope of our work does not include
detecting every malicious document; rather, we strive to detect
the malicious documents that use the vulnerability fixed by the
security patch in order to ensure that the unpatched machines
are secure against those documents during the window of
time before they are patched. This ensures that the enterprise
network can remain resilient to attack even with vulnerable
systems, at the cost of potentially not executing all documents
sent to unpatched machines.

Evaluation and Results. We analyze the effectiveness of our

approach in detecting malicious Portable Document Format
(PDF) files. We evaluate it in a Windows environment using a
corpus of 500 benign documents and both a custom data set
of synthetic malware and 50 live, publicly available malicious
PDFs from the Open Malware repository. We target malicious
PDF detection due to the inclusion of PDF file format exploits
in popular exploit kits such as Black Hole, Phoenix, and
others [15]. Furthermore, during the year 2013 malicious PDF
documents were reportedly the most common type of file
format exploit in the wild, according to Microsoft [1]. Our
initial findings illustrate that naively comparing the execution
traces is infeasible since the normal execution of the document
viewer application, itself, results in many variant executions
(for example, due to signal handling, threading, and unpre-
dictable GUI events). This is contrary to the intuitive belief
that opening the same benign document with the same variant
of the application should result in similar execution traces.
However, we show that by performing differential analysis on
the set of Windows API calls, we can accurately detect all of
the malicious documents with a low false positive rate.

II. BACKGROUND AND RELATED WORK
Moving Target Techniques. MT techniques have been pro-
posed as a way to re-balance the cyber environment in favor
of defense. The goal is to make computer systems less static
(a.k.a. dynamism), less deterministic (a.k.a. randomness) and
less homogeneous (a.k.a. diversity) [16]. One study categorizes
MT techniques into five large domains according to the layer
of the software stack where the movement happens: dynamic
networks, dynamic platforms, dynamic runtime environment,
dynamic software, and dynamic data. Interested readers should
see Okhravi et al. for a survey of MT research [17].
Multi-Variant Execution. Multi-variant execution techniques
are a form of dynamic software MT techniques in which
multiple diversified copies of a software application are ex-
ecuted, and their outputs are compared using a monitor. The
focus in multi-variant techniques is on diversity, rather than
randomness or dynamism, although some techniques in this
area incorporate some of those aspects.

The most similar related work to our approach is Orchestra
[11] which compares the behavior of two software variants
to detect attacks. The variants are created using the Reversed
Stack method. However, there are major differences with our
approaches. First, Orchestra creates the variants for the soft-
ware, thus requiring access to the source code. In our approach,
the variants already exist (one being the unpatched version of
the software and the other one the patched version), so it can
be used to protect proprietary, closed-source applications. In
fact, our analysis in this paper is on Adobe Reader which is
a closed-source application. Second, the goal of Orchestra is
different than ours. In Orchestra, the goal is to detect intrusion
attempts against the software, while our goal is protection of
unpatched machines. One major implication of this difference
is that in Orchestra, the two variants have to run at all times,
whereas in our approach, the two variants only run during the
period when a patch is available for the software and before it
is patched. Third, the comparison algorithms are also different.
Orchestra relies on system call level synchronization, while
our approach relies on differential set analysis of Windows
API calls.

III. APPROACH AND SYSTEM DESIGN
The modern IT enterprise is large and complex, both in
terms of number and diversity of systems and users. In such an
environment, deploying security-critical software patches to all
affected machines in a timely manner is a challenging task. The
goal of this work is to develop techniques and tools to protect

109

unpatched systems during the vulnerability window between
the release of the security-relevant patch by software vendors
and the deployment of the patch throughout the enterprise.

Specifically, we consider the scenario in which a malicious
data payload (e.g. a PDF file) is downloaded to an enterprise
network. Prior to its execution on any unpatched system, the
file is examined by DEA inside of a protected malware sand-
box on a separate machine. Online interactions with unpatched
systems (e.g. HTTP requests) are thus out of scope, as is
execution of the malicious payload directly on the vulnerable
machine.

Our approach to protecting unpatched software leverages a
form of MT defense based on the concept of software diver-
sity and multi-variant execution. Multi-variant execution has
proven to be a powerful tool for detecting exploit attempts [11],
[18]. In general, multi-variant execution approaches utilize two
or more diversified software variants, where each variant may
have a distinct memory layout, for example. By executing each
variant and comparing the results of the executions, it may be
possible to observe differences in execution among the variants
and infer that an exploit has been attempted.

A. Multi-variant Execution for Detection

We propose an approach to multi-variant execution called

differential execution analysis (DEA) that compares precisely
two software variants and relies on a distance function to
quantify how different the executions of the respective variants
are. Using DEA, we develop an execution monitor that can be
deployed within a complex enterprise network to detect attacks
against unpatched systems.
Software Variants. With DEA, the software is executed in
two distinct variants. First, the unpatched variant consists of
an executable that contains a known software vulnerability
for which a security patch is available but has not been
applied. Second, the patched variant is the result of applying
the security patch to the unpatched variant. Each variant is
executed with the same inputs and the results of each variant’s
execution are compared to identify differences that may be the
result of malicious behavior.

Relative to prior work on multi-variant execution [11], our
work is the first that employs variants that execute slightly
different code (i.e., the application of the patch). In fact, the
patched variant could potentially contain code modifications
beyond the minimum necessary to fix the vulnerability in
question (features may be added or removed in addition to
the security fix). This makes the task of comparing execution
traces particularly challenging, as we cannot necessarily exe-
cute the two variants in lock-step.

Differential Execution Analysis. The behavior of an execut-
ing application can be expressed as the sequence of system
calls that execute over the course of the application’s run time.
Prior work on multi-variant execution simultaneously executes
each of n diversified variants in lock-step, using monitors to
follow the execution of system calls between each variant [11].
We adopt a similar approach of monitoring and comparing
each variant’s system calls, but because the variant code is
not consistent, it is not feasible to execute each variant in
lock-step. Furthermore, detecting intrusions may not be as
straightforward as identifying differences in execution traces,
as different software versions may exhibit a certain amount of
variability even when processing benign inputs (no intrusion).
We consider each variant’s execution trace as a set of

system calls made during the execution.! These system calls
could merely be the name of the function or the name of
the function in addition to the argument values used in the
call. (We evaluate both approaches in Section IV and also
describe our approach to identifying useful argument values
from those that have arbitrary values.) Let S, and S,, be the
set of system calls within the patched and unpatched execution
traces, respectively. To quantify the difference in behaviors
between the patched and unpatched executions, we apply the
Jaccard distance metric J, as shown in Equation 1.

[Sp N Sl
1Sp U Su

J varies from O to 1, where a value of 1 indicates that the two
sets are disjoint and a value of 0 indicates that the sets are the
same.

To identify an exploit in the unpatched variant, we apply
a threshold on the distance metric J. If J is larger than a
threshold 7, then we consider the differences between exe-
cution traces to be too large to have occurred under benign
circumstances and, thus, the unpatched variant is assumed to
be under attack.

While the Jaccard set distance captures differences in
system calls between patched and unpatched variants, it may be
the case that there exists some degree of variability between
patched and unpatched execution traces that occurs even on
benign inputs. In this case, the Jaccard set distance does not
distinguish between variability that is normal and less common
differences due to an attack. We introduce a weighted Jaccard
distance metric to emphasize system calls in execution that
have been observed less frequently or never (in a modest-
size corpus of execution traces) and de-emphasize system calls
that are more common. The weighted Jaccard distance J,, is
defined in Equation 2.

J=1- (1)

Zsespmsu w(s)
Zsespusu w(s)

where w(s) is a function that weights the system calls ac-
cording to frequency across a corpus of benign executions.
(Sp and S, are the same as those used in Equation 1.) This
weighting function is the Inverse Document Frequency, which
is commonly used in natural language processing for tasks
such as document classification (defined in Equation 3).

N +0.5
w(s) = log <ﬁ) 3)

In the above, s is a system call, n, is the number of times s
occurs in the corpus, and N is the number of execution traces
in the corpus. The corpus is a collection of execution traces
for both the unpatched and patched variants processing benign
inputs (e.g., training data).

Jw=1-)

B. Prototype Monitor Implementation

Our monitor prototype targets Windows-based exploits and
is built on top of the open source Cuckoo Sandbox malware
analysis framework [19]. Cuckoo sets up a virtualized envi-
ronment for safe execution of potentially malicious payloads.
These include executable binaries, file formats with executable
content (e.g. Microsoft Office documents or PDF files), or
inputs such as URLs.

'Due to nondeterminism arising from, e.g., signal handling, treating an
execution trace as a sequence of system calls introduces unnecessary variance
between executions on the same input. In addition, each variant is running
different code, so comparing executions in lock-step may not be possible.
Thus, we treat execution traces as sets.

110

Patched Unpatched

Patched VM Unpatched VM

g—
Inputs ——— N WSASocket(...)

\ /‘ bind(...)

connect(...)

Fuckee] oot

Fig. 1: A high-level view of the multi-variant execution-based
monitor. Inputs are aggregated, and each variant execution is
orchestrated by the Cuckoo analysis framework. After exe-
cution, Windows call traces are produced and analyzed. A
hypothetical exploit attempt is shown in the unpatched trace
(in red).

FindFirstFile(...)| |FindFirstFile(...)

NtReadFile(...) || NtReadFile(...)

Execution Setup and Control

Our prototype execution monitor’s system architecture is
depicted in Figure 1. The prototype executes each variant
within its own VirtualBox VM running Windows XP Service
Pack 3. The prototype executes the variants by first restoring
each variant’s VM from a consistent snapshot, copying any
necessary input data into the VM, and finally executing each
variant. At variant execution time, a dynamic-link library
(DLL) is injected to instrument all Windows API calls. This
produces a trace of all Windows API calls, complete with
function names and argument values.> The monitor prototype
consists of 800 lines of source code and is written in Python.

The initial version of the monitor is geared toward the
detection of exploits in the free and widely deployed Adobe
Reader PDF rendering application. The unpatched variant is a
version of Adobe Reader with a known security vulnerability;
the patched variant is an updated version that contains a
security patch to fix the vulnerability.

Beyond providing instrumentation of the execution, the
Cuckoo framework also provides user emulation to drive the
application interface (by automatically moving the mouse,
clicking on dialog boxes, and driving the keyboard). Also,
since malware may attempt to detect reverse-engineering and
analysis environments (such as a honeypot or the Cuckoo
Sandbox), measures are taken to hide the fact that the variant
is executing within a virtualized system (for example, by
eliminating common Windows registry entries associated with
virtualization software).’

IV. EVALUATION AND RESULTS
In order to demonstrate the efficacy of our approach to
detecting attacks on unpatched software, we conduct experi-
ments with both synthetic and real data sets. In this section,
we describe the data sources used to support an empirical
evaluation of exploit detection through differential execution
analysis and present the experimental results.

A. Experiment Setup

Since our approach to malicious document detection uses a
threshold on the differences in execution behavior as a detector,
it is necessary to understand how the behavior (in terms of
system call sets) varies between different versions of the Adobe
Reader application across many input documents. In addition,
in order to evaluate true detection of exploits, we need a
representative sample of malicious PDF documents.

2Note that we use the terms “system call” and “Windows API call”
interchangeably throughout this paper.

3We consider the problem of preventing the malware from detecting the
VM/honeypot environment (and thereby attempting to evade analysis) to be
out of scope for this work.

TABLE I: Adobe Reader version numbers used as “unpatched”
and “patched” variants in our evaluation.

Experiment Unpatched Patched
T 9.0 9.1
2 9.1 9.3
3 9.3 9.33

TABLE II: Summary of the exploits, bugs, and software
versions affected in our synthetic malware data set.

Exploit Vulnerability Version
Adobe Collab.getlcon() Stack Overflow (CVE-2009-0927) 9.0
Adobe U3D Array Overrun (CVE-2009-3953) 9.1
Adobe Bundled LibTIFF Integer Overflow (CVE-2010-0188) 9.3

Unpatched and Patched Variants. To evaluate our proposed
multi-variant execution scheme, we need to select versions of
the Adobe Reader software for both the unpatched and patched
variants. For the purposes of evaluation, we select versions
of Adobe Reader that contain well-known vulnerabilities and
exploits (these are considered “unpatched”). We also select a
version of the application for each unpatched version that fixes
a vulnerability. We select three pairs of version numbers that
we evaluate within the unpatched and patched roles of our
multi-variant execution scheme, which are given in Table I.
Benign Data Source. In order to quantify the differences in
execution behavior between unpatched and patched versions of
Adobe Reader on benign documents, we select PDF documents
from the Govdocs1 data set [20] as inputs.4 This data set
consists of freely available files (image formats, MS Office
documents, PDFs, and text files) scraped from the .gov web
domain. We randomly select 500 PDF documents to use as
our benign samples.’

We also randomly select 75 documents to use to as a
training corpus for the weighted Jaccard set distance metric.
The corpus of benign execution traces is constructed simply by
rendering all 75 documents in each version of Adobe Reader.
This produces an execution trace for each document, which is
used to construct the weighting function from Equation 3.
Malware Data Sources. Obtaining real labeled malware traces
is more challenging. In particular, in order to locate real
malware samples that exploit a vulnerability within a specific
version of Adobe Reader (e.g., the unpatched version), it is
necessary to reverse-engineer the malware sample to learn
precisely what vulnerability is being exploited. Similarly, we
need to understand the exploited vulnerability in order to
determine the correct patched version to use.

In order to evaluate our approach on malware samples
with ground-truth vulnerability information, we first generate
a data set of realistic yet synthetic PDF malware using the
Metasploit framework [21]. Metasploit simplifies the process
of developing exploits against a set of known vulnerabilities by
providing tools for selecting a specific exploit and embedding
a payload (the post-exploit behavior such as establishing a
reverse shell to an attacker’s host). We treat this as a closed
world evaluation, where ground-truth is available and we can
quantify detection performance. Our custom malware data set
is summarized in Table II.

While we are aware of no publicly available malware
repository that contains the necessary reverse-engineering in-

“4Freely available at http://digitalcorpora.org/corpora/files.

SNote that some of the samples within the Govdocs1 data set are known
to contain malware (according to an anti-virus scan). While we deliberately
reject the samples that are detected to maintain a clean data set, there may
still be malicious samples that cannot be detected by AV tools.

%Note that the training corpus documents are disjoint from the 500 docu-
ments used for the evaluation.

111

formation for our evaluation, we select 50 PDF samples from
the Open Malware repository [22] for an open world evalua-
tion. These malware samples have been scanned by anti-virus
tools and produce a positive match to a malware signature.
Although, these real samples do not come with ground-truth
labels on the underlying vulnerability being exploited, the
repository does maintain the VirusTotal signature that detects
the malware and provides the exact date when the sample was
added to the public database. In an effort to obtain samples that
exploit the vulnerabilities in Adobe Reader 9.0-9.3, we select
traces from the 2009-2010 time frame, which corresponds to
the release of these versions of Adobe Reader.”

B. Results

We next turn our attention to evaluating the multi-variant
execution technique. In particular, we first measure the ex-
pected amount of difference in the proposed execution trace
comparison metrics between unpatched and patched variants
under benign inputs. Next, we use the characteristic differences
to optimally tune a threshold parameter that detects malware
with a high true detection rate and low false alarms.
Parameter Tuning. Before we attempt to detect malicious
documents, we first characterize the expected differences in
execution traces between the unpatched and patched variants.
Using the 500 benign PDF documents described in Sec-
tion IV-A, each document is rendered in both unpatched and
patched variants, and the execution traces are compared using
three distance metrics.

Figure 2a shows the distribution of Jaccard distances on
sets of Windows API function call names (no arguments). For
each pair of variants, the expected difference in call names
is small, particularly so for the comparison between Adobe
Reader 9.3 and 9.3.3 (a minor version difference).

Figure 2b shows the impact of computing the Jaccard
metric using both Windows API names and argument values.
Including argument values may help to identify function calls
that are common to both variants, but with different argu-
ment values. We observe that several Windows API functions
take arguments whose values may not be consistent between
each variant. For example, these arguments include pointers,
file/socket handles, process/thread IDs, graphical-user window
parameters, and others. We exhaustively enumerate and ignore
these argument values that are unlikely to have consistent
values between variants. Despite this, we see that there is
greater variance in the set distances for Experiments 1 and
2. (Experiment 3 traces still exhibit little variability.)

Figure 2c¢ shows the distribution of the weighted Jaccard
set distances for each pair of variants. We note that half of
all distances are close to O relative to the training sets. We
conjecture that malware traces may utilize system calls that
are rare or never occur in the corpus, which would result in a
high weighted distance.

Given the expected execution differences between the un-
patched/patched variants under benign inputs, we can derive a
threshold value 7 for each pair of variants and each distance
metric for an expected, fixed false positive rate. For example,
for the variant pair from Experiment 3 using the Jaccard set
distance on API call names, the threshold is 7 = 0.22. We
derive thresholds for each variant pair and distance metric,
which we apply next to detect malicious documents and
evaluate the false positive rates.

Detecting Synthetic Malware. We next evaluate our multi-
variant execution technique on a set of custom malware

"Note, however, that even though we select 50 samples, some may be
false positives while others may not impact the versions of Adobe Reader
considered in this paper.

1.0

1.0

0.8
0.6 08

0.6

0.4
|
Jaccard Set Distance

Jaccard Set Distance

0.2

=

0.

0.0

0.0
I

=

0.8 1.0

0.6

0.2

Weighted Jaccard Set Distance

0.0

1 2 3 1

Experiment #

2

Experiment #

3 1 2 3

Experiment #

(a) Jaccard distance on Windows API (b) Jaccard distance on Windows API (c) Weighted Jaccard distance on Win-

function names.

function names and argument values

dows API function names

Fig. 2: The distribution of set distances for three distance metrics for the three multi-variant experiments listed in Table I.

0.25
0.25

0.20
L
0.

0.10

False Positive Rate
0.10
L

False Positive Rate

0.05
0.05

0.00
0.00
L

Jaccard (name) Jaccard (name/args) Weighted Jaccard

Distance Metric

(a) Adobe Reader 9.0 Exploit

Jaccard (name) Jaccard (name/args) Weighted Jaccard

Distance Metric

(b) Adobe Reader 9.1 Exploit

0.25
\

0.20
L

False Positive Rate
0.10
L

0.05

Jaccard (name) Jaccard (name/args) Weighted Jaccard

Distance Metric

(c) Adobe Reader 9.3 Exploit

Fig. 3: False positive rates for each exploit and distance metric to a achieve true detection.

generated by Metasploit. This can be regarded as a closed
world evaluation, where we have ground-truth knowledge of
the underlying vulnerability, exploit, and post-exploit payload.
For each exploit summarized in Table II, we generate malicious
PDF documents with three Metasploit payloads, each of which
attempts to achieve persistence and establish a control channel
back to the attacker’s remote host.

The payloads we use for evaluation range in complexity
from simple and easy to detect to complex and stealthy. The
payloads are selected to provide a useful set of post-exploit
behaviors that an attacker likely would need to execute in order
to compromise a target host and achieve a primary objective
such as data theft or bringing the compromised host into a
botnet or spam campaign. The malware samples in our data
set are constructed by combining each exploit with each of
three post-exploit payloads from Metasploit:

1) shell_bind_tcp: a relatively simple shellcode that
binds a socket to a command shell and listens for con-
nections from a remote attacker;

2) meterpreter/reverse_http: a more sophisticated
payload that embeds the “meterpreter” attack framework
binary into the malicious PDF and establishes a reverse
command shell connection to an attacker’s remote host
over HTTP; and

3) dllinject/reverse_shell: a reverse shell pay-
load that uses DLL injection, which allows the exploit to
execute a payload without ever touching the compromised
host’s hard disk.

We execute both variants and report the false positive rates
necessary to detect the malware, for each distance metric.

112

Figure 3a shows the false positive rates for detecting
instances of the Adobe Collab.getlcon() exploit with each
payload across the three proposed distance metrics. For the
standard Jaccard set distance metrics that use function names
and names plus arguments, the false positive rates are relatively
high for all payloads (0.04-0.15). However, the weighted
Jaccard distance metric achieves a false positive rate of 0.0
while detecting all of the true malware samples, which is
optimal.

The false positive rates for detecting the Adobe U3D
exploits are shown in Figure 3b. Similar to the Adobe Reader
9.0 exploit, the false positive rates are relatively high for
the non-weighted Jaccard distance metrics, regardless of the
payload used. The weighted Jaccard distance still achieves a
0.0 false positive rate while detecting the malware samples.

Figure 3c shows the false positive rates for detecting the
Adobe Bundled LibTIFF exploits. Interestingly, the false posi-
tive rates for the non-weighted Jaccard distances are relatively
low compared to the other two experiments (0.01-0.03 for the
Jaccard distance on function names and 0.06-0.08 for Jaccard
distance on function names and argument values). This higher
performance relative to the other two experiments is likely
due to the fact that the patched and unpatched variants are
very close in version number (9.3 and 9.3.3), and likely have
relatively fewer code differences than the variant pairs used in
the other two experiments. This demonstrates the importance
of choosing a patched variant that consists of the minimal code
changes needed to fix the vulnerability present in the unpatched
variant (when possible). In addition, the weighted Jaccard
distance achieves a 0.0 false positive rate while detecting all

instances of the exploit.

Detecting Real Malware. We lastly turn our attention to de-
tecting real, live malware traces using multi-variant execution.
In contrast to the previous results where we had complete
knowledge of the underlying software vulnerabilities, exploit
techniques, post-exploit payloads, and precise set of software
versions affected, we now evaluate our techniques in an open
world setting. As such, we have little ground-truth knowledge
about the vulnerabilities exploited in the samples, and in
particular, we do not know exactly which version of Adobe
Reader is “unpatched” (e.g., vulnerable to the exploit) and
which is “patched” (e.g., fixes the vulnerability). Despite these
challenges, we attempt to discover which malware samples
affect the versions of Adobe Reader we use in our evaluation
using publicly available malware samples (as described in
Section IV-A).

We run all 50 suspected malware samples through each of
the three multi-variant execution pairs. Due to its high true
detection performance with a low false positive rate, we use
the weighted Jaccard set distance to identify potential exploit
attempts in Adobe Reader versions 9.0, 9.1, and 9.3. We then
manually examine the traces with the highest distance scores
between variant executions in order to find empirical evidence
of an exploit attempt. This allows us to validate the detection
as a likely true positive or a possible false positive.

In Adobe Reader 9.0, the multi-variant execution technique
identifies seven samples with a weighted Jaccard distance score
higher than any observed in the baseline comparison between
Adobe Reader 9.0 and 9.1 rendering benign inputs. Of these
samples, on manual inspection of the execution traces for
version 9.0, six contain Windows API calls that exist neither
in version 9.1 nor in the baseline of executions with benign
documents. The previously unobserved Windows API calls are
weighted highly, which contributes to the high score for the
execution comparisons. The functions in question are primarily
related to opening network sockets and establishing communi-
cation with a remote host: WSAStartup, socket, select,
connect, getaddrinfo, and CreateRemoteThread.
We also noted several instances where executable files are
written to disk for automatic execution at boot-time (for ex-
ample, C:\autoexec.bat). Since these six samples contain
unusual system calls similar to those in our synthetic malware
corpus in addition to other unusual and suspicious behavior, we
conclude that our technique detects six likely exploit attempts
and one potential false positive.

For Adobe Reader versions 9.1 and 9.3, we detect five
and three malware samples, respectively. For these versions,
all of the detected sample traces also contain function calls
related to establishing communication with remote hosts. Thus,
we conclude that our technique is adequate for detecting
exploit attempts that deviate from the expected behavior of
the application. We leave it as future work to expand our
evaluation to investigate and characterize the wide range of
malicious behaviors that may be harder to distinguish from
legitimate behavior.

V. CONCLUSION

We propose an MT-based approach to protect unpatched
software applications against attacks that target the vulnerabil-
ities fixed by an already released patch. Our approach relies on
running two variants of the software (patched and unpatched)
on a monitor and performing differential set analysis of
execution traces. Our technique, called differential execution
analysis (DEA), is appropriate for protecting machines in
situations where the machine cannot be immediately patched
in order to avoid breaking its functionality. The goal of our MT

113

technique is exposure and detection of malicious documents.

REFERENCES

[1] “Microsoft security intelligence report,” www.microsoft.com/security/
sir, 2014.

[2] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright, “Timing the
application of security patches for optimal uptime,” 2002, pp. 233-242.

[3] K. Lab. (2014) Kaspersky security network report: Windows usage and
vulnerabilities. Kaspersky Lab.

[4] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
Security and Privacy, 2008. SP 2008. IEEE Symposium on, 2008.

[S] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding focus in
the blur of moving-target techniques,” IEEE Security & Privacy, vol. 12,
no. 2, pp. 16-26, Mar 2014.

[6] H. Okhravi, A. Comella, E. Robinson, and J. Haines, “Creating a
cyber moving target for critical infrastructure applications using plat-
form diversity,” Elsevier International Journal of Critical Infrastructure
Protection, vol. 5, pp. 30-39, Mar 2012.

[71 C.Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (aslp): Towards fine-grained randomization of commodity
software,” in Proc. of ACSAC’06. Ieee, 2006, pp. 339-348.

[8] Z. Liang, B. Liang, L. Li, W. Chen, Q. Kang, and Y. Gu, “Against
code injection with system call randomization,” in Networks Security,
Wireless Communications and Trusted Computing, 2009. NSWCTC 09.
International Conference on, vol. 1, April 2009, pp. 584-587.

[9] T. Jackson, B. Salamat, G. Wagner, C. Wimmer, and M. Franz, “On
the effectiveness of multi-variant program execution for vulnerability
detection and prevention,” in Proceedings of the 6th International
Workshop on Security Measurements and Metrics, ser. MetriSec 10,
2010, pp. 7:1-7:8.

[10] T. Jackson, C. Wimmer, and M. Franz, “Multi-variant program exe-
cution for vulnerability detection and analysis,” in Proceedings of the
Sixth Annual Workshop on Cyber Security and Information Intelligence
Research, ser. CSIIRW *10. New York, NY, USA: ACM, 2010, pp.
38:1-38:4.

[11] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: Intrusion
detection using parallel execution and monitoring of program variants
in user-space,” in Proceedings of the 4th ACM European Conference
on Computer Systems, ser. EuroSys "09. New York, NY, USA: ACM,
2009, pp. 33-46.

[12] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo,
“Resilient intrusion tolerance through proactive and reactive recovery,”
in Proceedings of the 13th Pacific Rim International Symposium on
Dependable Computing, ser. PRDC 07, 2007, pp. 373-380.

[13] S. Sidiroglou, O. Laadan, A. D. Keromytis, and J. Nieh, “Using rescue
points to navigate software recovery,” in Proceedings of the 2007 IEEE
Symposium on Security and Privacy, ser. SP *07, 2007, pp. 273-280.

[14] D. Kewley, J. Lowry, R. Fink, and M. Dean, “Dynamic approaches to
thwart adversary intelligence gathering,” in Proceedings of the DARPA
Information Survivability Conference and Exposition II, 2001.

[15] V. Kotov and F. Massacci, “Anatomy of exploit kits: Preliminary
analysis of exploit kits as software artefacts,” in Proceedings of the 5th
International Conference on Engineering Secure Software and Systems,
ser. ESSoS’13. Springer-Verlag, 2013, pp. 181-196.

[16] “Cybersecurity game-change research & development recommenda-
tions,” NITRD CSIA IWG, Strategic Context, May 2010.

[17] H. Okhravi, M. Rabe, T. Mayberry, W. Leonard, T. Hobson, D. Bigelow,
and W. Streilein, “Survey of cyber moving targets,” Massachusetts
Institute of Technology Lincoln Laboratory Technical Report 1166,
September 2013.

[18] E. D. Berger and B. G. Zorn, “Diehard: Probabilistic memory safety
for unsafe languages,” in Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI °06, 2006, pp. 158-168.

[19] “Automated malware analysis — cuckoo sandbox,” http:/www.
cuckoosandbox.org.

[20] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing science
to digital forensics with standardized forensic corpora,” Digit. Investig.,
vol. 6, pp. S2-S11, Sep. 2009.

[21] Rapid7, “The metasploit framework,” http://www.metasploit.com.

[22] “Open malware,” http://oc.gtisc.gatech.edu:8080.

